Seminarort

Fraunhofer IOSB. Gutleuthausstr. 1. D-76275 Ettlingen Ansprechpartner: Tatiana Fischer, Assistenz Abt, SIGNATORIK Telefon: +49 (0) 7243 / 992-125, tatjana.fischer@iosb.fraunhofer.de

Eine Lageskizze sowie Hinweise für die Anreise und Übernachtung schicken wir Ihnen mit der Bestätigung der Anmeldung zu.

Gebühr

EUR 1.890.--

Die CCG ist ein gemeinnütziger Verein und in Deutschland von der Umsatzsteuer befreit. Für Veranstaltungen an ausländischen Standorten gelten die dortigen Steuerregelungen.

Mitglieder der CCG erhalten 10% Rabatt. Studentenrabatte sind auf Nachfrage verfügbar. Die Rabatte sind nicht miteinander kombinierbar.

Bitte zahlen Sie bargeldlos nach Erhalt der Rechnung.

Anmeldungen

Bitte melden Sie sich möglichst bis 14 Tage vor Seminarbeginn an:

Carl-Cranz-Gesellschaft e.V., Argelsrieder Feld 22, D-82234 Weßling Tel. +49 (0) 8153 / 88 11 98 -12

E-Mail: anmelden@ccg-ev.de

Internet: www.ccg-ev.de

Die Anmeldungen werden schriftlich bestätigt.

Weitere Informationen zum Inhalt

Dr. Alexander Schwarz, Fraunhofer IOSB D-76275 Ettlingen, E-Mail: alexander.schwarz@iosb.fraunhofer.de

Stornierung

Bei Stornierungen, die später als 14 Tage vor Seminarbeginn eingehen, werden 25% der Gebühr, bei Nichterscheinen die volle Gebühr in Rechnung gestellt. Die Vertretung eines angemeldeten Teilnehmers ist selbstverständlich möglich.

Ausfall von Seminaren oder Dozenten

Die CCG behält sich vor, bei zu geringer Teilnehmerzahl oder aus anderen triftigen Gründen ein Seminar bis 14 Tage vor Beginn abzusagen. Sie behält sich weiter vor, entgegen der Ankündigung im Programm auch kurzfristig einen Dozenten und evtl. auch dessen Thema zu ersetzen. Ein Schadensersatzanspruch bleibt ausgeschlossen.

Teilnehmer

Mitarbeiter aus Industrie, Behörden, Streitkräften und Forschung, die sich mit Bewertung und Beschaffung sowie Konzeption, Entwicklung und Bestimmung der Systemeigenschaften von IR-/Radargeräten befassen.

Seminarinhalte

Das Seminar führt im ersten Teil in die Grundlagen der Signaturentstehung im sichtbaren und infraroten Spektralbereich ein. Grundprinzipien der Tarnung und verschiedene Tarnmaßnahmen werden anhand vieler Beispiele vorgestellt. Modellierung und Bewertung von Signaturen und Tarnmaßnahmen bilden einen weiteren Schwerpunkt.

Im zweiten Teil steht nach den Grundlagen der Radartechnik der Einfluss von Tarnmaßnahmen auf das Detektionsverhalten von Sensoren zur Diskussion. Ausgewählte Signaturen werden unter dem Gesichtspunkt der Tarnung und Täuschung vorgestellt. Abschließend werden diverse Einsatzmöglichkeiten von Metamaterialien bei der Signaturminderung und Tarnung diskutiert.

Vortragende

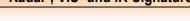
Carl v. Carmer Alexander Schwarz Alexander	Dr. Dr. Dr.	Fraunhofer IOSB, Ettlingen
Schwegmann Max Winkelmann	Dr.	
Jannis Bonin	Dr.	Hensoldt Sensors GmbH, Ulm
Andrey Osipov	Dr. rer. nat. habil.	DLR, Oberpfaffenhofen
André Fröhly Rolf Schumacher	Dr. Dr.	Fraunhofer FHR, Wachtberg
Jan Ritter	DiplIng.	Airbus Defence and Space, Bremen

Unterlagen

Jeder Teilnehmer erhält die Vortragsunterlagen. Die Kosten dafür sind in der Gebühr enthalten.

Seminar SE 2.14

Radar-. VIS- und IR-Signaturen: Technik und Anwendung


21. - 23. Oktober 2025 Ettlingen bei Karlsruhe

Wissenschaftliche Leitung

Dr. Alexander Schwarz Fraunhofer IOSB, Ettlingen

Seminarprogramm

Dienstag, 21.10.2025 08.30 - 16.30 Uhr

08.30 – 08.45 A. Schwarz	Begrüßung, Organisation
08.45 –10.15 A. Schwarz	Physikalische Grundlagen und Anwendungen von VIS- und Infrarot-Signaturen Theorie: Physikalische Grundlagen der Signaturentstehung, Energiebilanz von Oberflächen, Wärmebildsignatur, Prinzipien der Wärmebildtarnung
10.30 – 12.00 A. Schwarz	VIS- und Infrarot-Signaturen, Vorführungen Signaturen, Tarnmaterialien und -verfahren, Bewertung, Attrappen, Effekte und Beispiele von Signaturen und Tarnung mit Vorführungen im Umweltsimulationslabor
13.00 – 14.30 A. Schwegmann	Tarnung mit / gegen künstliche Intelligenz Definition von Auffälligkeit; Ansätze und Möglichkeiten diese zu quantifizieren. Künstliche neuronale Netze; Einsatz von KI zur Klassifikation und zur Aufklärung so- wie Tarn- und Täuschmöglichkeiten gegen KI- Aufklärung
15.00 – 16.30 M. Winkelmann	Signaturbewertung – Grundlagen und Verfahren Hintergrundproblematik, Entdeckungsentfernung vs. Entdeckungszeit, Bewertungsmaßstäbe (SCR, ROC, Conspicuity, InDiff), Beobachterversuche, relative Bewertung

Mittwoch, 23.10.2025 08.30 - 16.30 Uhr

08.30 –10.00 J. Bonin	IR-Signaturen Modellierung der Signaturentstehung und -berechnung, synthetische Szenen- und Sensorbild- generierung, Beispiele: Fahrzeuge, Flugzeuge, Missi- les, Schiffe, Signaturreduktion
10.30 – 12.00 C. v. Carmer	IR Schiffsignaturmanagement Signaturbestimmung, -vorhersage und -optimierung für Marine-Plattformen, Reduktions- und Gegenmaß- nahmen, Managementsystem für IR-Schiffsignaturen
13.00 – 14.30 A. Osipov	Grundlagen der elektromagnetischen Streuung Physikalische Theorien der elektromagnetischen Streuung: von Strahloptik über physikalische Optik zur physikalischen Beugungstheorie; mono- und bistati- sche Beugung an kanonischen Körpern
15.00 – 15.45 A. Osipov	Numerische Methoden zur RCS-Simulation Integralgleichungsmethode, Strahlabschussverfahren; Beispiele mono- und bistatische Streuquerschnitte
15.45 – 16.30 A. Osipov	Radartarnung mit Metamaterialien Metamaterial-Grundlagen, Signaturminderung durch konventionelle und Metamaterial basierende Radar- absorber, Metamaterial-Tarnkappen

08.30 – 10.00 J. Ritter	Stealth Technologien im Wandel der Zeit Entwicklung der IR- und Radar-Stealth Technologi von 1943 bis heute, Stealth Demonstratoren natio nal und international, Reaktionen auf neue Sensor technologien, Entwicklung von Nachweis- und Vor hersagetechniken, Stealth Projekte, zukünftige Entwicklungen
10.30 – 12.00 J. Ritter	Radartarnung für Flugzeuge in der Praxis Ermittlung der Signaturforderungen aus operatic nellen Betrachtungen; Erreichbare RCS Reduktionen für Nachrüsttarnungen an existierer den Flugzeugen; Multidisziplinäres Design hochge tarnter zukünftiger Luftfahrzeuge: Tools. Materialie

weis der Signaturperformance

13.00 - 14.30Radargrundlagen A. Fröhly

Geschichte, Frequenzbereiche, Radargleichung, Wellenformen, Antennen, Rückstreuguerschnitt (RCS), Doppler, Streumechanismen, Beamforming, SAR-Bildgebung, Anwendungen

und Prozesse für Auslegung, Fertigung und Nach-

15.00 - 16.30R. Schumacher

Nichtkooperative Ziel-Identifizierung und ATR Begriffsdefinitionen und -abgrenzung, ATR-Schemata, Merkmalsauswahl, Klassifizierungsverfahren, ROC und Konfusionsmatrizen, Beispiele und Anwendungen, modellbasierte Klassifizierung

Meterwellenradar zur Detektion **RCS-reduzierter Ziele**

RCS-Resonanzbereich, Rückstreumechanismen, Radarverfahren, EM-Kompatibilität, operationelle Gesichtspunkte, Experimentalsystem, Messergebnisse